Article ID Journal Published Year Pages File Type
187207 Electrochimica Acta 2013 5 Pages PDF
Abstract

Electrospun and carbonized 3D nanofiber mats coated with olivine structured lithium cobalt phosphate (LiCoPO4) were formed by a Pechini-assisted sol–gel process as cathode material for lithium ion batteries. 3D nonwoven nanofibers were soaked in aqueous solution containing lithium, cobalt salts and phosphates at 80 °C for 2 h. Then, the composites were dried and annealed at 730 °C for 2 to 12 h in nitrogen atmosphere. Crystalline deposits were uniformly distributed on the carbon nanofiber surface. The “loading” of the cathode material on the 3D carbon nanofiber composites reached 300 wt%. The electrochemical measurements revealed the discharge specific capacity (measured at a discharge rate of 0.1 C and room temperature) reaching a maximum value of 46 mAh g−1 after annealing time t = 5 h.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,