Article ID Journal Published Year Pages File Type
1872152 Physics Procedia 2012 5 Pages PDF
Abstract

Cu2ZnSnSe4 (CZTSe) thin films were prepared by selenization of simultaneously evaporated metallic Cu-Zn-Sn on soda lime glass (SLG) substrates. The selenization were performed in elemental selenium vapor ambient at 450 °C for 1.5 h using Argon as the carrier gas. The compositions and structural properties of the films were characterized by using EDS, XRD, and Raman, respectively. The results show that the synthesized CZTSe thin films are nearly stoichiometric and single-phase with a kesterite structure. The measurement for electrical and optical properties indicated that a high absorption coefficient of 104 cm-1 and a low resistivity of 30 Ωcm are obtained. The optical band-gap energy of the CZTSe thin film can be fitted to be as 1.52 eV, which closes to the optimum value for solar cell absorber. The preparation processing for CZTSe developed in this woek is more attractive than others reported in the industrialization applications because the atomic ratio of Cu:Sn:Zn in the precursor can be easily controlled by adjusting the ratio of the evaporation sources, meanwhile, it is more suitable for large-scale production.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)