Article ID Journal Published Year Pages File Type
1874448 Physics Procedia 2015 5 Pages PDF
Abstract

In addition to acousto-optic information processing and manufacturing of such devices, the interaction between optical and acoustic waves are an efficient method for physical measurements. The paper analyses the potential of the acousto-optic method for measurement and investigation of crystal properties. It also presents some examples of this method applied to such measurements and investigations. The acousto-optic implementation of the pulse-phase method is used for acoustic velocity measurements. Velocities in an arbitrary directions can be measured using the Shaefer-Bergman method (the visualization of the angular distribution of the inverse phase velocities) together with the pulse-phase method. The matrices of crystal elastic coefficients can be evaluated using the Shaefer-Bergman patterns, using the minimum number of tested samples. The Schlieren (shadow) image method can give information both on the characteristics of acoustic and optical fields. The acousto-optic interaction is Efficient Method for determination of elastic material nonlinearity parameters.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)