Article ID Journal Published Year Pages File Type
187445 Electrochimica Acta 2013 14 Pages PDF
Abstract

A comparative study by Time-of-Flight Secondary Ions Mass Spectrometry and X-ray Photoelectron Spectroscopy, i–E polarization curves and Electrochemical Impedance Spectroscopy of the corrosion protection of low alloy steel by 50 nm thick tantalum oxide coatings prepared by low temperature Atomic Layer Deposition (ALD) and Filtered Cathodic Arc Deposition (FCAD) is reported. The data evidence the presence of a spurious oxide layer mostly consisting of iron grown by transient thermal oxidation at the ALD film/substrate interface in the initial stages of deposition and its suppression by pre-treatment in the FCAD process. Carbonaceous contamination (organic and carbidic) resulting from incomplete removal of the organic precursor is the major cause of the poorer sealing properties of the ALD film. No coating dissolution is demonstrated in neutral or acid 0.2 M NaCl solutions. In acid solution localized corrosion by pitting proceeds faster with the ALD than with the FCAD coating. The roles of the pre-existing channel defects exposing the substrate surface and of the spurious interfacial oxide promoting coating breakdown and/or delamination are emphasized.

► 50 nm Ta2O5 coatings grown by ALD at 160 °C and FCAD for protection of steel. ► Combined analysis by ToF-SIMS, XPS, polarization curves and EIS. ► Relation between chemical architecture and corrosion protection properties studied. ► Localized corrosion by pitting with absence of coating dissolution demonstrated. ► Origin and role of spurious interfacial oxide promoting coating breakdown emphasized.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , , , ,