Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1874553 | Physics Procedia | 2014 | 4 Pages |
The nano-scale spatial gap distributions on apical-fluorine multi-layered cuprate superconductors Ba2Ca4Cu5O10(O1-x, Fx) (F0245, Tc = 70 K) are investigated by scanning tunneling microscopy/spectroscopy (STM/STS). The STM image shows randomly-distributed bright spot structures, which are assigned to the non-replaced apical oxygen. The dI/dV tunnel spectra show the coexistence of two kinds of the gap structures. The magnitudes of these gaps at 4.9 K are about ΔS ∼25 meV and ΔL ∼78 meV, respectively. The ΔL map shows the inhomogeneous distribution with the characteristic length of ∼1 nm. The smaller ΔL gap regions tend to locate at the bright-spot positions, indicating that the apical oxygen causes reduction of ΔL. These results are consistent with the well known relation between the carrier doping level and macroscopically observed gap size.