Article ID Journal Published Year Pages File Type
187458 Electrochimica Acta 2013 6 Pages PDF
Abstract

Three-dimensional (3D) nickel electrode structures are prepared by electroless plating of nickel on silicon microchannel plates. The material is characterized by cyclic voltammograms and electrochemical impedance spectra. Compared to the nickel sheet and nickel deposited on the silicon substrate, the effective nickel content in the oxide layer per unit area increases almost 100 times due to the porous nickel structure and 3D architectures of silicon microchannel plates. The larger surface area of the 3D electrode structures exchange the more electrons (one electron) per nickel atom in the redox reaction. However, the redox reaction rate determined by the mass transfer due to the slow ion transfer speed. The results suggest that the electrode structures based on silicon microchannel plates is a promising choice for fabricating 3D Li-ion battery or supercapacitors in a miniature size after the suitable structure design.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,