Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1874782 | Physics Procedia | 2012 | 6 Pages |
An asymmetric dual-band band-pass filter (DBPF) is proposed for the applications of IEEE 802.11b/g (2.4 GHz ∼ 2.48 GHz) on the multimode wireless local area networks (WLAN). The high temperature superconducing (HTS) filter was fabricated by pattering YBa2Cu3Oy (YBCO) films double-sided deposited on 20 × 20 mm2 LaAlO3 substrates with an RF sputtering technique and by putting them in copper housings. The simulation results show the asymmetric dual-band feature of two passbands at 2.45 and 2.48 GHz, each with a minimum in-band insertion loss of about 0.3 dB and bandwidths of 20 and 23 MHz, respectively. The realized HTS DBPF shows two passbands at 2.47 and 2.49 GHz with maximum insertion losses of 1.75 and 3.17 dB at 77 K, respectively. The measured results show a good HTS DBPF performance. Moreover, the temperature-dependent frequency responses can be well described by the modified two-fluid model based formulas, indicating that the frequency shift in HTS DBPFs is dominated by the temperature dependence of the magnetic penetration depth.