Article ID Journal Published Year Pages File Type
1875553 Results in Physics 2013 8 Pages PDF
Abstract

Bagasse filled recycled polyethylene bio-composites were produced by the compounding and compressive molding method. Two sets of composites were produced using uncarbonized (UBp) and carbonized (CBp) bagasse particles by varying the bagasse particles from 10 to 50 wt%. The surface morphology and the mechanical properties of the composites were examined. The results showed that the uniform distribution of the bagasse particles in the microstructure of the polymer composites is the major factor responsible for the improvement of the mechanical properties. The bagasse particles added to the RLDPE polymer improved its rigidity and the hardness values of the composites. The tensile and bending strengths of the composite increased with increasing percentage of the bagasse to a maximum of 20 wt%UBp and 30 wt%CBp. The impact energy and fracture toughness decreases with wt% bagasse particles. The developed composites have the best properties in the ranges of 30 wt% bagasse particle additions and for optimum service condition, carbonized bagasse particles addition should not exceed 30 wt%.

Keywords
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, ,