Article ID Journal Published Year Pages File Type
187592 Electrochimica Acta 2013 10 Pages PDF
Abstract

Carbon supported Pd and PdxCo alloy electrocatalysts of different PdxCo atomic ratios (x = 1, 2, 3 and 10) were prepared by the impregnation synthesis method at room temperature without heat treatment by ethylene glycol (EG) reduction. As prepared PdxCo bimetallic nanoparticles show a single-phase face-centered-cubic (fcc) disordered structure. The performance of these electrodes in the ORR was measured with cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), inductive coupled plasma (ICP), X-ray diffraction (XRD); scanning electron microscopy coupled to energy dispersive X-ray (SEM–EDX) and transmission electron microscope (TEM). For synthesized PdxCo/C electrocatalysts, the highest catalytic activity for the ORR, was found for a Pd:Co atomic ratio of 3:1 in acid media at the presence and absence of methanol with optimal Pd–Pd bond distance (0.2729 nm). Since the PdxCo/C alloy electrocatalysts are inactive for the adsorption and oxidation of methanol, it can act as a methanol-tolerant ORR catalyst in a direct methanol fuel cell (DMFC). A membrane-electrode assembly (MEA) has been prepared by employing of the Pd3Co/C as a cathode for passive direct methanol fuel cell and characterized by polarization curves and impedance diagrams. The DMFC test results indicate that the MEA prepared from Pd3Co/C cathode exhibits better performance compared to the MEA prepared from Pt/C (Electrochem) and an in-house Pd/C catalyst synthesized, in terms of maximum power density and minimum charge transfer resistance.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► The optimal amount of Pd/Co in the catalyst layer reduces the polarization resistance in comparison with Pd alone. ► The Pd/Co in catalyst layer increases the Pd utilization in the ORR. ► The DMFC test results indicate that the MEA prepared from Pd3Co/C cathode exhibits best performance.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,