Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1875945 | Applied Radiation and Isotopes | 2014 | 8 Pages |
•Flow system methodologies have been developed for the sequential separation of 90Sr and 210Pb.•Two radioactive beta emitters are determined with minimum sample manipulation.•Sludge samples from DWTP which were considered to be NORM samples have been analyzed.•Activities of both isotopes have been measured by liquid scintillation counting.
There has been increasing interest recently in the capacity of water treatment plants to concentrate and eliminate radionuclides from raw water. As the normal operation in these plants generates high quantities of sludge, which can be considered a naturally occurring radioactive material, it is important to gather information about its radiological content. Therefore, in order to determine the activity values of two radioactive beta emitters with minimal sample manipulation, an automated lab-on-valve and multisyringe flow injection system has been developed to achieve the sequential preconcentration and separation of 90Sr and 210Pb using an extraction chromatographic resin (Sr-spec). Activities of both isotopes were measured by liquid scintillation counting (LSC). The developed method was validated by analyzing three samples from three different intercomparison exercises and good Z-score values (between 0.1 and 1) and trueness values (between 10% and 17%) were obtained. The method was then also satisfactorily applied to sludge samples taken from a Spanish drinking water treatment plant which treats water from the Ebro River. The proposed method offers advantages over existing methods as it allows the sequential separation of both isotopes, simply by changing the elution conditions and using a semi-automated approach. Therefore, the method is less time consuming and environmentally friendly.