Article ID Journal Published Year Pages File Type
187605 Electrochimica Acta 2013 9 Pages PDF
Abstract

By immobilizing catalase on a nanocomposite containing functionalized multi-walled carbon nanotubes and l-cysteine modified gold nanoparticles, a third generation biosensor was developed for determination of the hydrogen peroxide. The cyclic voltammograms of catalase on the nanocomposite modified glassy carbon electrode showed a pair of well-defined quasi-reversible redox peaks with the formal potential of −441 ± 2 mV versus Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant was calculated to be 8.72 s−1. The enzyme electrode response toward hydrogen peroxide was linear in the concentrations ranging from 1 nM to 1 μM, with a detection limit of 0.5 nM. The apparent Michaelis–Menten constant was calculated to be 0.34 μM.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , , , , , ,