Article ID Journal Published Year Pages File Type
1877289 Applied Radiation and Isotopes 2006 4 Pages PDF
Abstract

This paper describes the first application of a microfabricated reaction system to positron emission tomography (PET) radiochemistry. We have applied microfluidic technology to synthesise PET radiopharmaceuticals using 18F and 124I as labels for fluorodeoxyglucose (FDG) and Annexin-V, respectively. These reactions involved established methods of nucleophilic substitution on a mannose triflate precursor and direct iodination of the protein using iodogen as an oxidant. This has demonstrated a proof of principle of using microfluidic technology to radiochemical reactions involving low and high molecular weight compounds. Using microfluidic reactions, [18F]FDG was synthesised with a 50% incorporation of the available F-18 radioactivity in a very short time of 4 s. The radiolabelling efficiency of 124I Annexin-V was 40% after 1 min reaction time. Chromatographic analysis showed that such reaction yields are comparable to conventional methods, but in a much shorter time. The yields can be further improved with more optimisation of the microfluidic device itself and its fluid mixing profiles. This demonstrates the potential for this technology to have an impact on rapid and simpler radiopharmaceutical synthesis using short and medium half-life radionuclides.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , , ,