Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
187839 | Electrochimica Acta | 2012 | 6 Pages |
In this study, a novel material for the electrochemical determination of bisphenol A using a nanocomposite based on multi-walled carbon nanotubes modified with antimony nanoparticles has been investigated. The morphology, structure, and electrochemical performance of the nanocomposite electrodes were characterised by field emission gun scanning electron microscopy, energy-dispersive X-ray spectroscopy, and cyclic voltammetry. A scan rate study and electrochemical impedance spectroscopy showed that the bisphenol A oxidation product is adsorbed on nanocomposite electrode surface. Differential pulse voltammetry in phosphate buffer solution at pH 6, allowed the development of a method to determine bisphenol A levels in the range of 0.5–5.0 μmol L−1, with a detection limit of 5.24 nmol L−1 (1.19 μg L−1).
► A novel material for the electrochemical sensing was developed. ► Sensor based CNTs modified with Sb-nanoparticles was characterised and applied. ► The proposed sensor was suitable and sensitive for the determination of bisphenol A.