Article ID Journal Published Year Pages File Type
1878650 Applied Radiation and Isotopes 2014 5 Pages PDF
Abstract
This article describes an algorithm developed for the digital processing of signals provided by a high-efficiency well-type NaI(Tl) detector used to apply the 4πγ technique. In order to achieve a low-energy threshold, a new front-end electronics has been specifically designed to optimize the coupling to an analog-to-digital converter (14 bit, 125 MHz) connected to a digital development kit produced by Altera®. The digital pulse processing is based on an IIR (Infinite Impulse Response) approximation of the Gaussian filter (and its derivatives) that can be applied to the real-time processing of digitized signals. Based on measurements obtained with the photon emissions generated by an 241Am source, the energy threshold is estimated to be equal to ~2 keV corresponding to the physical threshold of the NaI(Tl) detector. An algorithm developed for a Silicon Drift Detector used for low-energy x-ray spectrometry is also described. In that case, the digital pulse processing is specifically designed for signals provided by a reset-type preamplifier (55Fe source).
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , ,