Article ID Journal Published Year Pages File Type
1879064 Applied Radiation and Isotopes 2017 6 Pages PDF
Abstract

In National Metrology Institutes like LNE-LNHB, renewal and improvement of the instrumentation is an important task. Nowadays, the current trend is to adopt digital boards, which present numerous advantages over the standard electronics. The feasibility of an on-line fulfillment of nuclear-instrumentation functionalities using a commercial FPGA-based (Field-Programmable Gate Array) board has been validated in the case of TDCR primary measurements (Triple to Double Coincidence Ratio method based on liquid scintillation). The new applications presented in this paper have been included to allow either an on-line processing of the information or a raw-data acquisition for an off-line treatment. Developed as a complementary tool for TDCR counting, a time-to-digital converter specifically designed for this technique has been added. In addition, the description is given of a spectrometry channel based on the connection between conventional shaping amplifiers and the analog-to-digital converter (ADC) input available on the same digital board. First results are presented in the case of α- and γ-counting related to, respectively, the defined solid angle and well-type NaI(Tl) primary activity techniques. The combination of two different channels (liquid scintillation and γ-spectrometry) implementing the live-time anticoincidence processing is also described for the application of the 4πβ–γ coincidence method. The need for an optimized coupling between the analog chain and the ADC stage is emphasized. The straight processing of the signals delivered by the preamplifier connected to a HPGe detector is also presented along with the first development of digital filtering.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , ,