Article ID Journal Published Year Pages File Type
1879481 Applied Radiation and Isotopes 2008 6 Pages PDF
Abstract
Imaging of serotonin transporter (SERT) by positron emission tomography (PET) or single-photon emission-computed tomography (SPECT) in humans would provide useful information in diagnosis and therapy of several neurodegenerative and neuropsychiatric disorders. 6-Nitroquipazine is a highly potent and selective inhibitor of the SERT. For the development of new 99mTc-labeled 6-nitroquipazine derivatives as SERT imaging agents, novel [N-[2-((3-(4-(6-nitroquinolin-2-yl)piperazin-1-yl)propyl)(2-mercaptoethyl)amino]-acetyl-2-aminoethanethiolato] [99mTc]technetium (V) oxide (99mTc-MAMA-3-PQ) and its rhenium analog were synthesized and characterized. 99mTc-MAMA-3-PQ displayed high initial brain uptake (0.52% ID/organ at 2 min post-injection (pi)) and relatively fast washout in mice (0.09% ID/organ at 60 min pi). The regional brain distribution studies in rats showed high-specific binding ratios at 60 min pi. Maximum regional contrast ratio observed for thalamus/cerebellum was 2.94, followed by 2.62 for hypothalamus/cerebellum. These encouraging results lead us to further explore its derivatives as new imaging agents for the SERT in the brain.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , ,