Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
188094 | Electrochimica Acta | 2012 | 6 Pages |
Iron titanium oxide (Fe1.5Ti0.5O3) nanoparticles with the diameter of about 150 nm were prepared by hydrothermal process and further heat treatment at 300 °C for 2 h. The morphology, structure and electrochemical performance of Fe1.5Ti0.5O3 nanoparticles as anode material for lithium-ion batteries were investigated by scanning electron microscopy, X-ray diffraction and a variety of electrochemical testing techniques. It was found that, compared with TiO2 and Fe2O3, the iron titanium oxide electrode exhibited higher specific capacity of 734.9 mAh g−1 after 50 cycles at the current density of 50 mA g−1, good cycle stability and high-rate performance, suggesting that the Fe1.5Ti0.5O3 nanoparticle synthesized by this method is a promising anode material for lithium-ion batteries.