Article ID Journal Published Year Pages File Type
188145 Electrochimica Acta 2012 9 Pages PDF
Abstract

In this study, we have constructed a Pt/GOx-BMIM/PU electrode using alternating current electrophoretic deposition (AC-EPD) of glucose oxidase (GOx) in presence of 1-butyl-3-methylimidazolium [BMIM]+ and stabilized by a thin outer layer of polyurethane (PU). The Pt/GOx-BMIM electrode was characterized by optical microscopy, SEM and FT-IR. Optical microscopy and SEM showed the formation of thick and rough deposited films. The data from FT-IR illustrated the presence of both GOx and [BMIM]+ in the deposited film. Cyclic voltammetry showed that the presence of [BMIM]+ shift the starting potential of glucose electrooxidation by 420 mV toward negative values and led to a 3-fold increase in the current density. These two attributes make Pt/GOx-BMIM/PU a relevant bioanode for glucose/O2 biofuel cells. The Pt/GOx-BMIM/PU anode was connected to a Pt electrode as cathode and the non-compartmentalized cell was studied under air in phosphate buffer solution pH 7.4 containing 10 mM glucose. Under these conditions, the maximum power density reaches 36 μW cm−2. Furthermore, the stability over 3 weeks was shown to be pretty good due to the presence of the PU outer layer. Such electrodes have a great potential to be optimized, miniaturized to micro and nanoscale devices suitable as bioanodes for in vivo studies.

Keywords
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,