Article ID Journal Published Year Pages File Type
1882824 Physica Medica 2016 4 Pages PDF
Abstract

•Harnessing the Čerenkov effect for cancer treatment.•A combination of radiation and photodynamic therapy.•Low cost nanoparticles.

This study investigates the feasibility of exploiting the Čerenkov radiation (CR) present during external beam radiotherapy (EBRT) for significant therapeutic gain, using titanium dioxide (titania) nanoparticles (NPs) delivered via newly designed radiotherapy biomaterials. Using Monte Carlo radiation transport simulations, we calculated the total CR yield inside a tumor volume during EBRT compared to that of the radionuclides. We also considered a novel approach for intratumoral titania delivery using radiotherapy biomaterials (e.g. fiducials) loaded with NPs. The intratumoral distribution/diffusion of titania released from the fiducials was calculated. To confirm the CR induced enhancement in EBRT experimentally, we used 6 MV radiation to irradiate human lung cancer cells with or without titania NPs and performed clonogenic assays. For a radiotherapy biomaterial loaded with 20 μg/g of 2-nm titania NPs, at least 1 μg/g could be delivered throughout a tumor sub-volume of 2-cm diameter after 14 days. This concentration level could inflict substantial damage to cancer cells during EBRT. The Monte Carlo results showed the CR yield by 6 MV radiation was higher than by the radionuclides of interest and hence greater damage might be obtained during EBRT. In vitro study showed significant enhancement with 6 MV radiation and titania NPs. These preliminary findings demonstrate a potential new approach that can be used to take advantage of the CR present during megavoltage EBRT to boost damage to cancer cells. The results provide significant impetus for further experimental studies towards the development of nanoparticle-aided EBRT powered by the Čerenkov effect.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , ,