Article ID Journal Published Year Pages File Type
1885381 Medical Dosimetry 2009 6 Pages PDF
Abstract
Dosimetric studies on respiratory movement suggest several advantages toward the use of 4-dimensional computed tomography (4DCT) in radiation treatment planning. 4DCT is a method to obtain a series of CT scans each representing a different respiratory phase. The use of 4DCT has provided substantial information on tumor movement in the lung, allowing for the creation of custom planning margins explicitly including respiratory motion. These custom motion margins may result in an increase in the amount of normal lung in the field; however, it is believed less normal lung is irradiated than if generic motion margins were used. Clinical data regarding dose to normal lung by using 4DCT remain rather limited. Thus, a study presenting figures on the change in normal lung dose between planned free breathing CT and 4DCT cases would be useful to the dosimetry community. We have generated plans comparing fast spiral CT and 4DCT in regard to tumor coverage and the resulting dose to normal lung for the clinical target volume (CTV) and planning target volume (PTV) expansions used at our institution. These data were analyzed for free breathing and 4D plans of 6 lung cancer patients using intensity modulated radiation therapy (IMRT). We compared doses to normal lung tissue between free breathing and 4DCT plans.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , , , , , ,