Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1885411 | Radiation Measurements | 2009 | 6 Pages |
Concern regarding the possibility of criminal or terrorist use of nuclear materials has led to an interest in developing the capability to measure radiation dose in a variety of natural and manufactured materials. Electron paramagnetic resonance (EPR) measurements of radiation dose following a radiological incident may aid in screening affected populations (triage) and in reconstruction of doses following accidents. One such EPR dosimeter is wallboard (drywall), a common construction material composed largely of gypsum (calcium sulphate dihydrate). We have identified the CO3− and SO3− dose-sensitive lines in drywall and developed a measurement protocol using the intensity of CO3− line. Proper background subtraction is a major difficulty, and we demonstrate a procedure based on alignment of a contaminant Mn2+ line. As a proof-of-concept, a wallboard panel was irradiated with a 60Co source, and a two-dimensional map of the absorbed dose was measured. While most aliquots yielded reasonably accurate doses, a spatially contiguous region of apparent dose-insensitivity in one panel was identified.