Article ID Journal Published Year Pages File Type
1889115 Chaos, Solitons & Fractals 2009 6 Pages PDF
Abstract
This paper investigates the synchronization of chaotic systems using an output feedback polynomial controller. As only output system states are considered, it makes the controller design and system analysis more challenging compared to the full-state feedback control schemes. To study the system stability and synthesize the output feedback polynomial controller, Lyapunov stability theory is employed. Sufficient stability conditions are derived in terms of sum of squares (SOS) conditions to guarantee the system stability and aid the controller synthesis. A genetic algorithm-based SOS technique is proposed to find the solution to the SOS conditions and the parameter values of the output feedback polynomial controller. A simulation example is employed to illustrate the effectiveness of the proposed approach.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
,