Article ID Journal Published Year Pages File Type
1889264 Chaos, Solitons & Fractals 2014 16 Pages PDF
Abstract

The aim of this paper is to review the classical limit of Quantum Mechanics and to precise the well known threat of chaos (and fundamental graininess) to the correspondence principle. We will introduce a formalism for this classical limit that allows us to find the surfaces defined by the constants of the motion in phase space. Then in the integrable case we will find the classical trajectories, and in the non-integrable one the fact that regular initial cells become “amoeboid-like”. This deformations and their consequences can be considered as a threat to the correspondence principle unless we take into account the characteristic timescales of quantum chaos. Essentially we present an analysis of the problem similar to the one of Omnès (1994,1999), but with a simpler mathematical structure.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
, ,