Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1890183 | Chaos, Solitons & Fractals | 2007 | 7 Pages |
Abstract
In most population models, diffusion between patches is assumed to be continuous or discrete, but in practice many species diffuse only during a single period. In this paper we propose a single species model with impulsive diffusion between two patches, which provides a more natural description of population dynamics. By using the discrete dynamical system generated by a monotone, concave map for the population and a ϵ1 â ϵ2 variation we prove that the map always has a globally stable positive fixed point. This means that a single species system with impulsive diffusion always has a globally stable positive periodic solution. This result is further substantiated by numerical simulation.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Statistical and Nonlinear Physics
Authors
Limin Wang, Zhijun Liu, Jinghui Jinghui, Lansun Chen,