Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1890416 | Chaos, Solitons & Fractals | 2009 | 9 Pages |
In this paper, minimum entropy algorithm for controlling chaos, is applied to a Cournot duopoly with different constant marginal costs, as a discrete-time dynamical system which shows chaotic behavior. The ME control is implemented through delayed feedback. It is assumed that the equations of the dynamical system are not known, so the feedback gain cannot be obtained analytically from the system equations. In the ME method the feedback gain is obtained adaptively in such a way that the entropy of the system converges to zero, hence a fixed point of the system will be stabilized. Application of the proposed method with different economic control strategies is numerically investigated. Simulation results show the effectiveness of the ME method for controlling chaos in economic systems with unknown equations.