Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1891453 | Chaos, Solitons & Fractals | 2015 | 14 Pages |
Abstract
In this paper, we construct the Sato theory including the Hirota bilinear equations and tau function of a new q-deformed Toda hierarchy (QTH). Meanwhile the Block type additional symmetry and bi-Hamiltonian structure of this hierarchy are given. From Hamiltonian tau symmetry, we give another definition of tau function of this hierarchy. Afterwards, we extend the q-Toda hierarchy to an extended q-Toda hierarchy (EQTH) which satisfy a generalized Hirota quadratic equation in terms of generalized vertex operators. The Hirota quadratic equation might have further application in Gromov-Witten theory. The corresponding Sato theory including multi-fold Darboux transformations of this extended hierarchy is also constructed. At last, we construct the multicomponent extension of the q-Toda hierarchy and show the integrability including its bi-Hamiltonian structure, tau symmetry and conserved densities.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Statistical and Nonlinear Physics
Authors
Chuanzhong Li,