Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1892291 | Chaos, Solitons & Fractals | 2008 | 7 Pages |
The critical behavior of the Lyapunov exponent near the transition to robust chaos via type-III intermittency is determined for a family of one-dimensional singular maps. Critical boundaries separating the region of robust chaos from the region where stable fixed points exist are calculated on the parameter space of the system. A critical exponent β expressing the scaling of the Lyapunov exponent is calculated along the critical curve corresponding to the type-III intermittent transition to chaos. It is found that β varies on the interval 0 ⩽ β < 1/2 as a function of the order of the singularity of the map. This contrasts with earlier predictions for the scaling behavior of the Lyapunov exponent in type-III intermittency. The variation of the critical exponent β implies a continuous change in the nature of the transition to chaos via type-III intermittency, from a second-order, continuous transition to a first-order, discontinuous transition.