Article ID Journal Published Year Pages File Type
1892532 Chaos, Solitons & Fractals 2006 5 Pages PDF
Abstract
Rigorous mathematical formulation of quantum mechanics requires the introduction of a Hilbert space. By contrast, the Cantorian E-infinity approach to quantum physics was developed largely without any direct reference to the afore mentioned mathematical spaces. In the present work we present a novel reinterpretation of basic ε(∞) Cantorian spacetime relations in terms of the Hilbert space of quantum mechanics. In this way, we gain a better understanding of the physical and mathematical structure of quantum spacetime. In particular we show that the two-slit experiment required a definite topology which is consistent with a certain fuzzy Kähler manifold or more generally a Cantorian spacetime manifold. Finally by determining the Euler class of this manifold, we can estimate the most likely number of Higgs particles which may be discovered.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
,