Article ID Journal Published Year Pages File Type
1892674 Chaos, Solitons & Fractals 2015 11 Pages PDF
Abstract

A nonlinear network with many coupled nonlinear LC dispersive transmission lines is considered, each line of the network containing a finite number of cells. In the semi-discrete limit, we apply the reductive perturbation method and show that the wave propagation along the network is governed by a two-dimensional nonlinear partial differential equation (2-D NPDE) of Schrödinger type. Two regimes of wave propagation, the high-frequency and the low-frequency are detected. By the means of exact soliton solution of the 2-D NPDE, we investigate analytically the soliton pulse propagation in the network. Our results show that the network under consideration supports the propagation of kink and dark solitons.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
, ,