Article ID Journal Published Year Pages File Type
1893127 Journal of Geometry and Physics 2011 16 Pages PDF
Abstract

We introduce the notion of omni-Lie 2-algebra, which is a categorification of Weinstein’s omni-Lie algebras. We prove that there is a one-to-one correspondence between strict Lie 2-algebra structures on 2-sub-vector spaces of a 2-vector space VV and Dirac structures on the omni-Lie 2-algebra gl(V)⊕Vgl(V)⊕V. In particular, strict Lie 2-algebra structures on VV itself one-to-one correspond to Dirac structures of the form of graphs. Finally, we introduce the notion of twisted omni-Lie 2-algebra to describe (non-strict) Lie 2-algebra structures. Dirac structures of a twisted omni-Lie 2-algebra correspond to certain (non-strict) Lie 2-algebra structures, which include string Lie 2-algebra structures.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,