Article ID Journal Published Year Pages File Type
1893827 Journal of Geometry and Physics 2012 8 Pages PDF
Abstract

We establish a correspondence between Young diagrams and differential operators of infinitely many variables. These operators form a commutative associative algebra isomorphic to the algebra of the conjugated classes of finite permutations of the set of natural numbers. The Schur functions form a complete system of common eigenfunctions of these differential operators, and their eigenvalues are expressed through the characters of symmetric groups. The structure constants of the algebra are expressed through the Hurwitz numbers.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,