Article ID Journal Published Year Pages File Type
1893830 Journal of Geometry and Physics 2012 6 Pages PDF
Abstract
In arXiv:1008.1018 it is shown that a given stable vector bundle V on a Calabi-Yau threefold X which satisfies c2(X)=c2(V) can be deformed to a solution of the Strominger system and the equations of motion of heterotic string theory. In this note we extend this result to the polystable case and construct explicit examples of polystable bundles on elliptically fibered Calabi-Yau threefolds where it applies. The polystable bundle is given by a spectral cover bundle, for the visible sector, and a suitably chosen bundle, for the hidden sector. This provides a new class of heterotic flux compactifications via non-Kähler deformation of Calabi-Yau geometries with polystable bundles. As an application, we obtain examples of non-Kähler deformations of some three generation GUT models.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,