Article ID Journal Published Year Pages File Type
1894028 Chaos, Solitons & Fractals 2007 9 Pages PDF
Abstract
With the help of an extended mapping method and a linear variable separation method, new types of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with two arbitrary functions for (2 + 1)-dimensional Korteweg-de Vries system (KdV) are derived. Usually, in terms of solitary wave solutions and rational function solutions, one can find some important localized excitations. However, based on the derived periodic wave solution in this paper, we find that some novel and significant localized coherent excitations such as dromions, peakons, stochastic fractal patterns, regular fractal patterns, chaotic line soliton patterns as well as chaotic patterns exist in the KdV system as considering appropriate boundary conditions and/or initial qualifications.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
, , ,