Article ID Journal Published Year Pages File Type
1895472 Chaos, Solitons & Fractals 2015 18 Pages PDF
Abstract

In this paper we study Spectral Decomposition Theorem (Lasota and Mackey, 1985) and translate it to quantum language by means of the Wigner transform. We obtain a Quantum Version of Spectral Decomposition Theorem (QSDT) which enables us to achieve three distinct goals: First, to rank Quantum Ergodic Hierarchy levels (Castagnino and Lombardi, 2009, Gomez and Castagnino, 2014). Second, to analyze the classical limit in quantum ergodic systems and quantum mixing systems. And third, and maybe most important feature, to find a relevant and simple connection between the first three levels of Quantum Ergodic Hierarchy (ergodic, exact and mixing) and quantum spectrum. Finally, we illustrate the physical relevance of QSDT applying it to two examples: Microwave billiards (Stockmann, 1999, Stoffregen et al. 1995) and a phenomenological Gamow model type (Laura and Castagnino, 1998, Omnès, 1994).

Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
, ,