Article ID Journal Published Year Pages File Type
1895564 Chaos, Solitons & Fractals 2014 7 Pages PDF
Abstract

Let (fn)(fn) be a given sequence of continuous selfmaps of a compact metric space X which converges uniformly to a continuous selfmap f of the compact metric space X. In this note, we present a counterexample which shows that Theorems 3.9–3.11 obtained by us in [Chaos, Solitons and Fractals 45 (2012) 759–764] are not true and give the correct proofs of Theorems 3.4–3.7 in [Chaos, Solitons and Fractals 45 (2012) 759–764]. We also obtain a equivalence condition for the uniform map f to be syndetically sensitive or cofinitely sensitive or multi-sensitive or ergodically sensitive and a sufficient condition the uniform map f to be totally transitive or topologically weak mixing.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
, ,