Article ID Journal Published Year Pages File Type
1895859 Journal of Geometry and Physics 2013 16 Pages PDF
Abstract

We investigate the concept of projective equivalence of connections in supergeometry. To this aim, we propose a definition for (super) geodesics on a supermanifold in which, as in the classical case, they are the projections of the integral curves of a vector field on the tangent bundle: the geodesic vector field associated with the connection. Our (super) geodesics possess the same properties as in the classical case: there exists a unique (super) geodesic satisfying a given initial condition and when the connection is metric, our supergeodesics coincide with the trajectories of a free particle with unit mass. Moreover, using our definition, we are able to establish Weyl’s characterization of projective equivalence in the super context: two torsion-free (super) connections define the same geodesics (up to reparametrizations) if and only if their difference tensor can be expressed by means of a (smooth, even, super) 1-form.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,