Article ID Journal Published Year Pages File Type
1896377 Physica D: Nonlinear Phenomena 2011 10 Pages PDF
Abstract

In many scientific and engineering problems the solidification of an alloy leads to a highly convoluted crystalline matrix modeled as a thermodynamically controlled reactive porous medium called a mushy layer. We analyze the interaction of an external shear flow with a solidifying mushy layer through a corrugated mush–liquid interface. We find that the external flow can drive forced convective motions within the mushy layer resulting in the formation of a pattern of dissolution and solidification features transverse to the overall flow. Here we seek to lay bare the underlying processes through a systematic comparison of matched asymptotic expansions and numerical solutions. The success of our modeling effort draws substantially upon understanding gleaned from the fluid mechanics of boundary layers and the theory of multi-component solidification. The results have a broad range of implications in geophysics and materials science.

Research highlights► Shear flow coupled with growth of crystalline alloy leads to transverse dissolution features. ► Matched asymptotic expansions show the structure of the viscous boundary layer coupled to crystal growth. ► Our results have broad ranging implications in geophysics and materials science.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,