Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1896422 | Chaos, Solitons & Fractals | 2008 | 13 Pages |
Chaotic systems exhibit an erratic behavior reflected by a strong divergence of trajectories with arbitrarily close initial condition. In this way, similar to trajectories from pseudorandom number generators, chaotic trajectories can be seen as noise with some degree of correlation. This work focuses on the study of some correlation properties (i.e., scaling) of chaotic trajectories from the Chua’s system. This is done by using detrended fluctuation analysis, which is a method designed for the detection of correlations in stochastic time series. It is found that, in general, Chua’s trajectories behave as a Brownian motion for small time scales, while they can display a white noise-like behavior or be dominated by harmonic oscillations for large time scales.