Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1896587 | Chaos, Solitons & Fractals | 2007 | 11 Pages |
Abstract
In this paper we study the limit cycles of the system xË=-y(x+a)(y+b)+εP(x,y), yË=x(x+a)(y+b)+εQ(x,y) for ε sufficiently small, where a,bâRâ§¹{0}, and P, Q are polynomials of degree n. We obtain that 3[(n â 1)/2] + 4 if a â  b and, respectively, 2[(n â 1)/2] + 2 if a = b, up to first order in ε, are upper bounds for the number of the limit cycles that bifurcate from the period annulus of the cubic center given by ε = 0. Moreover, there are systems with at least 3[(n â 1)/2] + 2 limit cycles if a â  b and, respectively, 2[(n â 1)/2] + 1 if a = b.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Statistical and Nonlinear Physics
Authors
Adriana BuicÄ, Jaume Llibre,