Article ID Journal Published Year Pages File Type
189673 Electrochimica Acta 2011 11 Pages PDF
Abstract

Electrodeposition and dissolution of zinc in methanesulfonic acid were studied as the negative electrode reactions in a hybrid redox flow battery. Cyclic voltammetry at a rotating disk electrode was used to characterize the electrochemistry and the effect of process conditions on the deposition and dissolution rate of zinc in aqueous methanesulfonic acid. At a sufficiently high current density, the deposition process became a mass transport controlled reaction. The diffusion coefficient of Zn2+ ions was 7.5 × 10−6 cm2 s−1. The performance of the zinc negative electrode in a parallel plate flow cell was also studied as a function of Zn2+ ion concentration, methanesulfonic acid concentration, current density, electrolyte flow rate, operating temperature and the addition of electrolytic additives, including potassium sodium tartarate, tetrabutylammonium hydroxide, and indium oxide. The current-, voltage- and energy efficiencies of the zinc-half cell reaction and the morphologies of the zinc deposits are also discussed. The energy efficiency improved from 62% in the absence of additives to 73% upon the addition of 2 × 10−3 mol dm−3 of indium oxide as a hydrogen suppressant. In aqueous methanesulfonic acid with or without additives, there was no significant dendrite formation after zinc electrodeposition for 4 h at 50 mA cm−2.

► Use methanesulfonic acid to avoid dendrite formation during a long (>4 h) zinc electrodeposition. ► Electrochemical characterization of Zn(II) deposition and its morphology using methanesulfonic acid solutions. ► Use of additives to improve the efficiency of zinc deposition and dissolution as the half cell reaction of a redox flow battery.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,