Article ID Journal Published Year Pages File Type
1897060 Physica D: Nonlinear Phenomena 2009 9 Pages PDF
Abstract

The introduction of delays into ordinary or partial differential equation models is well known to facilitate the production of rich dynamics, ranging from periodic solutions through to spatio-temporal chaos. In this paper, we consider a class of scalar partial differential equations with a delayed threshold nonlinearity which admits exact solutions for equilibria, periodic orbits and travelling waves. Importantly, we show how the spectra of periodic and travelling wave solutions can be determined in terms of the zeros of a complex analytic function. Using this as a computational tool to determine stability, we show that delays can have very different effects on threshold systems with negative as opposed to positive feedback. Direct numerical simulations are used to confirm our bifurcation analysis, and to probe some of the rich behaviour possible for mixed feedback.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,