Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1897068 | Physica D: Nonlinear Phenomena | 2011 | 13 Pages |
The movement of vortices in superconductors due to an applied current can induce a loss of perfect conductivity. Experimental observations show that material impurities can effectively prevent vortices from moving. In this paper, we provide numerical studies to investigate vortex pinning and critical currents through the use of an optimal control approach applied to a variant of the time-dependent Ginzburg–Landau model that can account for normal inclusions. The effects that the size and boundary of the sample and the number, size, shape, orientation, and location of the inclusion sites have on the critical current and vortex lattices are studied. In particular, the optimal control approach is used to determine the optimal properties of the impurities so as to maximize the critical current, i.e., the largest current that can pass through a superconductor without resistance.
► We study the pinning of vortices by embedding normal inclusions into a superconductor material. ► We use an optimal control approach to determine the critical current. ► Effects of different normal inclusion properties on critical current are investigated. ► Optimal properties of impurities to maximize the critical current are studied in detail.