Article ID Journal Published Year Pages File Type
1897343 Physica D: Nonlinear Phenomena 2007 29 Pages PDF
Abstract

This paper provides a unified method for analyzing chaos synchronization of the generalized Lorenz systems. The considered synchronization scheme consists of identical master and slave generalized Lorenz systems coupled by linear state error variables. A sufficient synchronization criterion for a general linear state error feedback controller is rigorously proven by means of linearization and Lyapunov’s direct methods. When a simple linear controller is used in the scheme, some easily implemented algebraic synchronization conditions are derived based on the upper and lower bounds of the master chaotic system. These criteria are further optimized to improve their sharpness. The optimized criteria are then applied to four typical generalized Lorenz systems, i.e. the classical Lorenz system, the Chen system, the Lü system and a unified chaotic system, obtaining precise corresponding synchronization conditions. The advantages of the new criteria are revealed by analytically and numerically comparing their sharpness with that of the known criteria existing in the literature.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,