Article ID Journal Published Year Pages File Type
1897404 Physica D: Nonlinear Phenomena 2006 12 Pages PDF
Abstract

This paper presents the first application of the discontinuity-mapping approach to the study of near-grazing bifurcations of originally quasiperiodic, co-dimension-two system attractors. The paper establishes an exact formulation for the discontinuity-mapping methodology under the assumption that a Poincaré section can be found that is everywhere transversal to the grazing attractor. In particular, it is shown that, while a reduced formulation may be employed successfully in the case of co-dimension-one attractors, it fails to capture dynamics in directions transversal to the original quasiperiodic attractor. This shortcoming necessitates the full machinery presented here. The generality of the proposed approach is illustrated through numerical analysis of two nonlinear dynamical systems of dimension three and four.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,