Article ID Journal Published Year Pages File Type
1897875 Physica D: Nonlinear Phenomena 2008 49 Pages PDF
Abstract

Motivated by physical and numerical observations of time oscillatory “galloping”, “spinning”, and “cellular” instabilities of detonation waves, we study Poincaré–Hopf bifurcation of traveling-wave solutions of viscous conservation laws. The main difficulty is the absence of a spectral gap between oscillatory modes and essential spectrum, preventing standard reduction to a finite-dimensional center manifold. We overcome this by direct Lyapunov–Schmidt reduction, using detailed pointwise bounds on the linearized solution operator to carry out a nonstandard implicit function construction in the absence of a spectral gap. The key computation is a space-time stability estimate on the transverse linearized solution operator reminiscent of Duhamel estimates carried out on the full solution operator in the study of nonlinear stability of spectrally stable traveling waves.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,