Article ID Journal Published Year Pages File Type
1897886 Physica D: Nonlinear Phenomena 2009 10 Pages PDF
Abstract

The interference pattern generated by the merging interaction of two Bose–Einstein condensates reveals the coherent, quantum wave nature of matter. An asymptotic analysis of the nonlinear Schrödinger equation in the small dispersion (semiclassical) limit, experimental results, and three-dimensional numerical simulations show that this interference pattern can be interpreted as a modulated soliton train generated by the interaction of two rarefaction waves propagating through the vacuum. The soliton train is shown to emerge from a linear, trigonometric interference pattern and is found by use of the Whitham modulation theory for nonlinear waves. This dispersive hydrodynamic perspective offers a new viewpoint on the mechanism driving matter–wave interference.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,