Article ID Journal Published Year Pages File Type
1897899 Physica D: Nonlinear Phenomena 2009 7 Pages PDF
Abstract

We develop a complete mathematical theory for the symmetrical solutions of the generalized nonlinear Schrödinger equation based on the concept of angular pseudomomentum. We consider the symmetric solitons of a generalized nonlinear Schrödinger equation with a nonlinearity depending on the modulus of the field. We provide a rigorous proof of a set of mathematical results justifying that these solitons can be classified according to the irreducible representations of a discrete group. Then we extend this theory to non-stationary solutions and study the relationship between angular momentum and pseudomomentum. We illustrate these theoretical results with numerical examples.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , , ,