Article ID Journal Published Year Pages File Type
189825 Electrochimica Acta 2011 10 Pages PDF
Abstract

A calorimeter was used to measure the heat production in polymer electrolyte membrane (PEM) fuel cells operated on hydrogen and oxygen at 50 °C and 1 bar. Two cells were examined, one using a 35 μm thick Nafion membrane and a catalyst loading of 0.6/0.4 mg Pt cm−2, for the cathode and anode layer, respectively, the other using a 180 μm thick Nafion membrane and loading of 0.4/0.4 mg Pt cm−2. The cells investigated thus had different membranes and catalyst layers, but identical porous transport layers and micro-porous layers. The calorimeter is unique in that it provides the heat fluxes out of the cell, separately for the anode and the cathode sides. The corresponding cell potential differences, ohmic cell resistance and current densities are also reported. The heat fluxes through the current collector plates were decomposed by a thermal model to give the contributions from the ohmic and the Tafel heats to the total heat fluxes. Thus, the contributions from the reversible heat (the Peltier heats) to the current collectors were determined. The analysis suggests that the Peltier heat of the anode of these fuel cell materials is small, and that it is the cathode reaction which generates the main fraction of the total heat in a PEM fuel cell. The entropy change of the anode reaction appears to be close to zero, while the corresponding value for the cathode is near −80 J K−1 mol−1.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,