Article ID Journal Published Year Pages File Type
1899527 Reports on Mathematical Physics 2006 19 Pages PDF
Abstract

Measures with values in the set of sesquilinear forms on a subspace of a Hilbert space are of interest in quantum mechanics, since they can be interpreted as observables with only a restricted set of possible measurement preparations. In this paper, we consider the question under which conditions such a measure extends to an operator-valued measure, in the concrete setting where the measure is defned on the Borel sets of the interval [0, 2π) and is covariant with respect to shifts, in this case, the measure is characterized with a single infinite matrix, and it turns out that a basic sufficient condition for the extensibility is that the matrix be a Schur multiplier. Accordingly, we also study the connection between the extensibility problem and the theory of Schur multipliers. In particular, we define some new norms for Schur multipliers.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics