Article ID Journal Published Year Pages File Type
1899928 Physica D: Nonlinear Phenomena 2007 11 Pages PDF
Abstract
This paper predicts the evolution of nanopores during anodic oxidation of aluminum. The theory is based on approximate nonlinear evolution equations of the interfaces, which reproduce all the observed patterns, and using them for stability analysis. The pore structure in the early stages is described by the Damped Kuramoto-Sivashinsky (DKS) equation, which predicts hexagonal patterns with points and line defects, in agreement with experimental observations of the evolving pores. This is the first work to follow pore dynamics. Comparison with asymptotic constant-thickness and -curvature solutions is conducted.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,